On some identities involving k-Jacobsthal numbers

Elen Viviani Pereira Spreafico*
*Universidade Federal do Mato Grosso do Sul

Resumo

In recent article, Jhala, Sisodiya and Rathore [2] proved a number of sum identities involving a k-Jacobsthal Numbers $J(k, n)$ defined by $J(k, n+1)=k J(k, n)+2 J(k, n-1)$; for $n \geq 1$, with initial condition $J(k, 0)=0, J(k, 1)=1$. For $n \geq 1$, we have that $J(1, n)=J_{n}$, the $n t h$ Jacobsthal number. For example, Jhala, Sisodiya and Rathore proved the following identities using Binet's formula for the general term of the k-Jacobsthal sequence, for all integers $n \geq 0$:

Theorem 1. (Catalan's identity)

$$
J(k, n-r) J(k, n+r)-J^{2}(k, n)=(-1)^{n+1-r} J^{2}(k, r) 2^{n-r} .
$$

Theorem 2. (D'ocagne's identity) If $m>n$ then $J(k, m) J(k, n+$ $1)-J(k, m+1) J(k, n)=(-2)^{n} J(k, m-n)$.

Many authors have employed the technique of counting via tilings in differents contexts, like in [1]. Our goal in this work is to view above identities combinatorially with point view generalized, provinding bijective arguments from the context of tilings as discussed in [1].

Referências

[1] Benjamim, A. T. and Quinn, J. J. Proofs that Really Count: The Art of Combinatorial Proof. The Dolciani Mathematical Expositions, 27, Mathematical Association of America, Washington, DC, 2003.
[2] Jhala D., Sisodiya,K., Rathore, G.P.S, On Some Identities for k Jacobsthal Numbers, Int. Journal of Math Analysis, Vol. 7, 2013, no. 12, 551-556.

